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ABSTRACT- As it is a modern era of science and technology and the humankind is to elaborate their thinking in the field of medi-
cine and different technology sector. Quantum computing is essentially harnessing and exploiting the amazing laws 
of quantum mechanics to process information. A quantum computer uses quantum bits or qubits. Qubit is a quantum system that 
encodes the zero and the one into two distinguishable quantum states, qubits behave quantumly. Quantum computing technique is 
discussed about the phenomena of superposition and entanglement. Superposition is one particle property while entanglement is a 
characteristic of two or more particles.  If use our classical algorithms on a quantum computer, it perform the operation as the way 
done by classical computer. To show the superiority of quantum it needs to use new algorithms which can exploit the phenomenon 
of quantum parallelism. In this paper the comparative analysis is discuss according to various quantum parameters. 

Index Terms— Black box quantum computing known as oracle, Hadamard transform, Hadamard gate, Quantum 
algorithm,  Superposition, Eigen value, Eigen state. 
 

 
 

——————————      —————————— 
1 INTRODUCTION 

A quantum algorithm is sequence of operations that makes the 
computer do a specific task, like solving a certain problem. You 
have all learned how to write algorithms and to implement them 
in different high-level languages like Mat lab, Mathematic, C, 
Fortran etc. Quantum Computing is still on a much more basic 
level will specify algorithms on the level of specific gates Per-
formed on one, two or more qubits [7]. They are probabilistic 
algorithm [12]. The basic algorithms are introduced here. 

I. Deutsch’s Algorithm 
II. Deutsch-Jozsa Algorithm 

III. Simon’s Algorithm 
IV. Peter Shor’s Factorizing Algorithm  
V. Lov Grover’s Database Search Algorithm 

1.1 DEUTSCH’S ALGORITHM 

The Deutsch algorithm is an elementary quantum algorithm 
which is proposed by David Deutsch in 1985 [3]. Even it is in 
little practical use. It creates the first examples of a quantum al-
gorithm which is more efficient than classical algorithm. 

1.1.1 Procedure of Deutsch Algorithm 

In the Deutsch problem, a black box quantum computer known 
as an oracle is given, that implements the function𝑓: {0,1} →
{0,1}. Now the condition𝑓(0) = f(1) needs to be checked. It is 
equivalent to check 𝑓(0)⊕ f(1) (where⊕ is addition of modulo 

2). It is not concerned to find the value or outcome of f(x) itself. 
To find the answer classically, one needs to query for both x=0 
and x=1, hence two queries are required [5]. Quantum mechani-
cally this can be solved in just one query. The figure represents 
the circuit for Deutsch’s Algorithm.  
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              Fig 1: Circuit diagram of Deutsch’s algorithm 

Here, given a function𝑓: {0,1} → {0,1} , two qubits |𝑥,𝑦〉 are used 
and transferred them into |𝑥, 𝑦 ⊕𝑓(𝑥)〉. Two qubits are used to 
preserve reversibility, to keep the value of input x after the oracle 
performs. The second qubit y acts as a output register. Let Uf is 
the unitary transform which implements the function and 
maps|𝑥〉|𝑦〉𝑡𝑜|𝑥〉|𝑓(𝑥)⊕𝑦〉.  

The process starts with the two qubits state |0〉𝑎𝑛𝑑|1〉 and after 
this use Hadamard transform each qubit. This yield  1
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After applying the function to the current state:  

1
2

(|0〉(|𝑓(0)⊕ 0〉 − |𝑓(0)⊕ 1〉) + |1〉(|𝑓(1)⊕ 0〉 − |𝑓(1)⊕ 1〉)) 

=
1
2

 ((−1) 𝑓(0)|0〉 (|0〉 − |1〉) +  (−1) 𝑓(1)|1〉(|0〉 − |1〉)) 

= (−1) 𝑓(0) 1
2

|1〉) +  (−1) 𝑓(0)⊕𝑓(1)|1〉(|0〉 − |1〉).
 

〉 

The last bit is ignored and the global phase and therefore have 
the state by Hadamard transform it state:  

1
2

(|0〉+ |0〉+  (−1) 𝑓(0)⊕𝑓(1)|0〉 − |0〉 −  (−1) 𝑓(0)⊕𝑓(1)|1〉)  

= 1
2

((1 +  (−1) 𝑓(0)⊕𝑓(1)|0〉+ (1−  (−1) 𝑓(0)⊕𝑓(1)|1〉) . 

If the result of measurement is a Zero,  𝑓(0)⊕𝑓(1)=0 . Therefore the 
function is constant and otherwise it is balanced. Here Uf is ap-
plied to 0 and 1 simultaneously. This is known as quantum par-
allelism. It provide square root improvement to query based 
problem [9]. 

1.1.2 Application 

• It provides global property of solution space [11]. 
• It is the special case of the general Deutsch-Jozsa algo-

rithm. 

1.1.3 Advantage 

• It provides exponential speedup over classical com-
puter. 

• Exponential improvement is possible for quantum 
computer. 

1.1.4 Disadvantage 

• It is only faster by a factor of 2. 
• The time taken to solve the problem is same as classi-

cal computer. 

1.2 DEUTSCH-JOZSA ALGORITHM 

The Deutsch–Jozsa algorithm is discovering by David 
Deutsch and Richard Jozsa in 1992. It is one of the first examples 
of a quantum algorithm that is exponentially faster than any 
possible deterministic classical algorithm [1][2].  

In this there is a black box quantum computer namely an oracle. 
It promised that the function is either constant (0 on all inputs or 
1 on all inputs) or balanced (returns 1 for half of the in-
put domain and 0 for the other half) the task then is to determine 
if f is constant or balanced by using the oracle. 

1.2.1 Procedure of Deutsch-Jozsa Algorithm 

 In 1992, Deutsch and Jozsa produced a deterministic algorithm 
which was generalized to a function which takes n bits for its 
input. Further improvements to the Deutsch–Jozsa algorithm 
were made by Cleve resulting in an algorithm that is both de-
terministic and requires only a single query of f. This algorithm 
is still referred to as Deutsch–Jozsa algorithm in honour of the 
groundbreaking techniques they employed. 

 

      |0〉       /n                                                                                                         

 

       |1〉 

                         

            Fig 2: Circuit diagram of Deutsch-Jozsa algorithm 

 

The algorithm begins with the n+1 bit state |0〉⊗𝑛 |1〉. That is, the 
first n bits are each in the state |0〉 and the final bit is|1〉. 
A Hadamard transformation is applied to each bit to obtain the 
state 

. 

The function f implemented as quantum oracle. The oracle maps 
the state |x〉 |y〉to|x〉|y⊕𝑓(𝑥) 〉.  

Applying the quantum oracle gives 

. 

For each x, 𝑓(𝑥) is either 0 or 1. A quick check of these two pos-
sibilities yields 

. 

At this point the last qubit may be ignored. Apply a Hadamard 
transformation to each qubit to obtain 

𝐻⊗𝑛  

H 

𝐻⊗𝑛 

 𝑈𝑓  
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Where 

  is the 
sum of the bitwise product. 

Finally examine the probability of measuring |0〉⊗𝑛 , 

 

Which evaluates to 1 if f(x) is constant (constructive interference) 
and 0 if f(x)  is balanced (destructive interference). 

1.2.2 Application  

• The algorithm taken originally two evaluations in-
stead of one. 

• It is based on quantum fourier transformation. 

1.2.3 Advantage 

• It is more efficient than any classical algorithm. 
• Answer of the algorithm is always correct. 
• It provide speed ratio 2n:1. 
• The algorithm was successful with a probability of 

one half.  

1.2.4 Disadvantage 

• It gives answer with a single evaluation. 
• It takes two function evaluations instead of only one. 

1.3 SIMON’S ALGORITHM 

Simon’s algorithm is one of the first quantum algorithms discov-
ered which outperforms any known classical algorithm. The 
model of decision tree complexity conceived by Daniel Simon in 
1994. 

Simon's algorithm uses o(n) queries for black box and the best 
classical probabilistic algorithm necessarily needs at 
least  Ω(2⊗𝑛/2) queries. It is also known that Simon's algorithm 
is optimal in the sense that any quantum algorithm to solve this 
problem requires Ω(𝑛) queries. 

The function f:{0,1} 𝑛 → {0,1} 𝑛 , promised to satisfy the property 
that for some   𝑠 ∈{0,1} 𝑛for all 𝑦, 𝑧 ∈{0,1} 𝑛,f(y)=f(z),  if and only 
if y=z or  y⨁𝑧 = 𝑠. 

1.3.1 Procedure of Simon’s Algorithm 

The set of n-bit strings is a z2 vector space . Given the preimage 
of f is either empty, or forms cosset with n-1 dimensions. Using 
quantum algorithms, can, with arbitrarily high probability de-
termine the basis vectors spanning this n-1 subspace since s is a 
vector orthogonal to all of the basis vectors [8]. 

 

Fig 3: Circuit diagram of Simon’s algorithm 

The problem can be stated as a decision problem which goal is to 
decide whether or not there is a period that is whether f is 2 to 1 
or 1 to 1. Simon’s problem is an instance of an oracle problem 
which is classically hard, even for probabilistic algorithms, but 
tractable for quantum computers [4].  

Classically the problem is hard because the probability to find 
two identical elements x and y after 2^(N/4) queries is less than 
2^(−N/2). Simon’s quantum solution is as the following 

1. Start with a state vector〈H|O〉 )⊗N |O 〉⊗N 

2. Run the oracle once to make the state vector 

2−
N
2� |X〉

x
|f(x)〉 

3. Measure the second register; if the measurement outcome is 
f(x0), then the state vector of the first register will be 

1
√2

(|xo〉+ xo ⊗ p〉) 

4. Applying a Hadamard gate to each of the N remaining qubits 
leads to 

1

2
(N+1)

2�
� ((−1)xo

y
. y + �−1 (xo⊗p).y�|y 〉 

                                                      = 1

2
(N−1)

2�
∑ ((−1) xo.y
p.y−o |y 〉 

Final measurement of the first register in computational basis, 
will give a value y which is such that y.p= 0 modulo 2. 

Repeating this procedure in order to get N − 1 linearly inde-
pendent vectors y1,…,yN-1 p can be determined from the set of 
equations {yi. p = 0}. To this end there should be a procedure to 
query the oracle O(N) times. 
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 1.4 PETER SHOR’S FACTORIZING ALGORITHM 

 This algorithm, first introduced by Peter Shor and used for inte-
ger factorization. On a quantum computer, to factor an integer N, 
the polynomial time taken in logN . 

 Peter Shor discovered the eponymous algorithm in 1994. It is 
very important because theoretically it can "break" the widely 
used public-key cryptography scheme RSA. It is based on the 
factoring of large numbers which is computationally infeasible 
for classical computers [10][14]. 

Shor algorithmcan divide  into two parts. 

a) Classical computer → a reduction of the factoring problem to 
a problem of order-finding. 

b) Quantum computer→  An algorithm solving the order-finding 
problem. 

1.4.1 Procedure of Shor’s Factorizing Algorithm 

Given n, find 2𝑛2 < q < 3n2   such that q is a product of small 
prime factors. We’ll suppose q = 2 l .Construct a quantum com-
puter with   q2 = 22l  qubits (plus additional qubits for ‘work-
space’).The base states are denoted |a, 𝑏〉 = |𝑎〉|𝑏〉 .Where a, b are 
binary vectors (i.e. vectors with entries 0,1) of length  l. Equiva-
lently, a and b (called registers 1 and 2) are integers < q written in 
binary. 

At any time, the state of the system is given by 

            |𝛹〉 =∑  𝑞−1
𝑎=0 ∑ c𝑞−1

𝑏=0 Ra, b |a, b〉       where 

            ca, b   ϵ c, Σ a,b |ca,b|2  =1    And |ca,b|2 is the probability that a 
measurement of the system will find the state to be |a, 𝑏〉. 

Step 1 

 At initial state 

                                                   |𝛹〉 .......|(𝛹𝑚〉. 

Step 2 

Apply the randomly chosen value of x between 1 and n. 

                        |𝑎, 𝑥𝑎 𝑚𝑜𝑑 𝑛〉 
. 

to the state of the quantum computer.  

 𝑞−1/2   ∑  𝑞−1
𝑎=0 |𝑎, 𝑥𝑎 𝑚𝑜𝑑 𝑛〉. 

 

 

Step 3 

Measure the second register only. observe the second register to 
be in a base state |𝑘〉 where k is some power of x mod n (and all 
powers of x mod n are equally likely to be observed). 

This measurement projects the state |𝛹〉  ∈ Cq2 into the q-
dimensional subspace spanned by all base states |a, k〉 for the 
fixed k whose value observed. 

Thus the new state is 

                            |𝛹〉 → 1
√𝑀
∑   
𝑎€𝐴 |𝑎, 𝑘〉 

Where A is the set of all a < q such that xa mod n is k and M = |A|. 
That is, 

A = {a0, a0+r, a0+2r, . . . , a0+(M−1)r} 

where M ≈≈ 𝑞
𝑟
≫ 1. thus 

                            |𝛹〉 = 1
√𝑀
∑  𝑀−1
𝑑=0 |𝑎0 + 𝑑𝑟, 𝑘〉. 

Step 4 

Apply the Discrete Fourier Transform Uq to the first register. 
This transforms the state from 

1
√𝑀

�  
𝑀−1

𝑑=0

|𝑎0 + 𝑑𝑟, 𝑘〉 

to 

                                                      =∑ e
2𝜋𝑖𝑐𝑎0∕𝑞
�𝑞𝑀  𝑞−1

𝑐=0 �∑  𝑀−1
𝑑=0 ζd  

 �|𝑐, 𝑘〉 

where  𝜁 = 𝑒2𝜋𝑖𝑐𝑟 𝑞⁄  . 

 Step 5 

Measure register 1. observe register 1 to be in state|𝑐 〉  with 
probability 

Pr(c) = 1
𝑞𝑀
�

  
 ∑  𝑀−1

𝑑=0 ζd  �
2
 

where  𝜁 = 𝑒2𝜋𝑖𝑐𝑟 𝑞⁄   

if 𝑐𝑟 𝑞⁄   is not very close to an integer, then powers of ζ very near-
ly cancel out (‘destructive interference’) and such states|𝑐 〉  are 
extremely to be get.  
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Step 6 

For the observed value of c, use a classical computer to find frac-
tions d/r very close to c/q, hoping that this will give us the true 
order r of x mod n. 

For this use the method of continued fractions, computing the 
convergent d1/r1 to c/q for which the denominator         r < n. Not-
ing that all the fractions𝑑1  

𝑟1
, 2𝑑1  
2𝑟1

, 3𝑑1  
3𝑟1

,........... are close to c/q, it is 

reasonable to try small multiples of r1 as possible values of r.  

                       𝑟1, 2𝑟1, 3𝑟1, … … , ⌊ log(𝑛) 1+∈     ⌋  𝑟1 

as possible values for r, checking whether 𝑥𝑟 mod n gives 1 in 
each case, and repeating the experiment as often as necessary 
(O(1) times on average, compared with O(log log n) trials on av-
erage if multiples of r1 are not considered). Peter Shor’s Algo-
rithm is generalized to find the prime factors of an integer. Spe-
cial quantum circuit design is proposed to find the divisors of a 
number. The lines required in a wiring diagram are proportional 
to n and the execution time is proportional to the square of n 
[5][6]. 

1.5 GROVER’S DATABASE SEARCH ALGORITHM 

This is a quantum algorithm to find an unsorted database having 
N entries in O (N1/2) time and using O (logN) storage space [4], 
this was invented by Lov Grover in 1996.  

Conventionally, to search an unsorted database we requires a 
linear search, which is O (N) in time. Grover's algorithm, which 
takes O (N1/2) time, is the quickest possible quantum algorithm to 
search an unsorted database. It provides "only" a quadratic 
speedup, in compare to other quantum algorithms. The quadrat-
ic speedup is considerable when N is large.  

 Grover's algorithm is probabilistic because of its ability to give 
the correct answer with high probability. The probability of fail-
ure can easily be decreased by repeating the algorithm [9].  

The Grover's algorithm can be described as "inverting a func-
tion". If there is a function y=f(x) that can be evaluated on a quan-
tum computer, described algorithm allows us to calculate x 
when y is given. Inverting a function is related to the searching 
of a database in the sense there can be a function which produces 
a particular value of y when x matches a desired entry in that 
database, and another value of y for any other values of 
x.Grover's algorithm can also be used for estimating the mean 
and median of a set of numbers, and for solving the Collision 
problem. It can also be used to solve NP-complete problems by 
performing exhaustive searches over the set of possible solutions 
[12]. 

 

1.5.1 Procedure of Grover's Algorithm 

Let us consider an unsorted database having N entries. The N-
dimensional state required for space H, which can be supplied 
by log2N qubits. Let’s take the value for database entry1, 2, 3 
...N.Assume observation, Ω, acting on H, with N difference Eig-
en values which are known. Each of the eigenstates of Ω encodes 
one of the entries in the database, in a described manner. Eigen-
states are denoted as |1〉, |2〉, … . , |𝑁〉 (using bra-ket notation) and 
the corresponding eigenvalues by {𝜆1,𝜆2,……….,𝜆𝑁} .  

A unitary operator is provided, U ω, which acts as a subroutine 
that compares database entries with  following some search cri-
terion. The algorithm is not defined how this subroutine works, 
but it is quantum subroutine which works with superposition of 
states. Furthermore, it must act especially on one of the eigen-
states, |ω>, which corresponds to the database entry matching 
the search criterion. To be precise, it is required Uω to have the 
following effects: (𝑈𝜔|𝜔〉) = (−|𝜔〉), (𝑈𝜔|𝑥〉 = |𝑥〉),𝑎𝑙𝑙 𝑥 ≠ 𝜔 

Our goal is to identify this eigenstate |ω>, or equivalently the 
eigenvalue ω, that Uω acts especially upon. Two unitary opera-
tors are defined as follows: 𝑈𝜔 = 𝐼 − 2|𝜔〉〈𝜔|  and𝑈𝑠 = 2|𝑠〉〈𝑠|− 𝐼 
after application of the two operators (U ω and Us), the ampli-
tude of the searched-for element increases. And this is one 
Grover iteration r. N=2n, n is number of qubits in blank (zero) 
state .  

𝑈𝑠|𝑠〉 = |𝑠〉 −
2
√𝑁

|𝜔〉 𝐴𝑛𝑑 𝑈𝑠 �|𝑠〉 −
2
√𝑁

|𝜔〉 � =
𝑁 − 4
𝑁

|𝑠〉 

+
2
√𝑁

|𝜔〉 

STEPS 

The steps of Grover's algorithm:  

1. Initialize the system to the state  |𝑠〉 = 1
√𝑁
∑  𝑁
𝑥=1 |𝑥〉. 

2. Perform the following "Grover iteration" r(N) times.   

1. Apply the operator 𝑈𝜔 = 𝐼 − 2|𝜔〉〈𝜔|. 

2. Apply the operator 𝑈𝑠 = 2|𝑠〉〈𝑠|− 𝐼 .  

3. Perform the measurement Ω. The measurement result will be 
λω with probability approaching 1 for N>>1. From λω, ω may be 
obtained.  

1.5.2 Application 

• Finding a Witness for an NP Problem. 
• Unstructured Database Search. 
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1.5.3 Advantage 

• It is used for estimating the mean and median of a 
set of numbers. 

• It is used for solving the Collision problem. 
• It provides a quadratic speedup. 
• It is probabilistic because it gives the correct answer 

with high probability. 

1.5.4 Disadvantage 

• In order to have high probability of success have to 
know the number t of solutions and t << N. 

2 COMPARATIVE ANALYSES 

NAME OF 
ALGORITHM 

CONCEPT APPLICATION SPEEDUP 

DEUTSCH’S 
ALGORITHM 

It can  
complete task 
in one shot  
which take 
two shots in 
classical  
computer. 

For global 
property  
solution. 

It exhibits a 
two to one 
speedup in 
a certain 
computa-
tion. 

DEUTSCH- 
JOZSA 

ALGORITHM 

An exponent- 
tial separation 
 between  
classical  
deterministic 
 and quantum 
 algorithm. 

For Fourier 
transform. 

Even great-
er speedup 
with ratio 
2^n: 1. 

SIMON’S 
ALGORITHM 

Exponential 
separation  
between  
probabilistic  
and quantum  
algorithm. 

For decision 
tree.                                    

 

SHOR’S 
ALGORITHM 

Quantum  
computer can 
 efficiently  
factor  
numbers. 

For order  
finding. 

It provide  
the super 
polynomial 
speedup 

GROVER’S 
ALGORITHM 

It provides 
polynomial  
speedup over  
classical  
computer. 

For searching 
database. 

It provides 
quadratic 
speedup. 

 

 

 

3 CHALLENGES 

1. It must be scalable, it need a set of qubits that can be added to 
indefinitely. 

2. The interaction between qubits must be controllable enough to 
make quantum logic gates. 

3. There must be some readout capability. 

4. It must be possible to move processing qubits accurately be-
tween specified locations. 

4 CONCLUSIONS 

By the help of quantum computing we increase the accessing 
speed of our computer for transferring the data, it’s the basic 
step towards the quantum computing have been taken with 
demonstration and manipulation and its future scope is to fulfil 
all the challenges. 
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